N A T U R K U N D L I C H E S   I N F O R M A T I O N S S Y S T E M

species descriptions

distribution maps


Natural History Society

activity diagrams

interactions between organisms


Our biodiversity database contains 410833 records with 1734035 registered individuals

National Moth Week July 22-30 2017
Please submit your data here.

European Moth Nights September 21-25 2017
Please contribute and submit your data here.


NKIS-biology NKIS-geology NKIS - abiotic parameters NKIS-QM


wikimedia commons offene Naturführer National Moth Week European Moth Nights Salzburgwiki Lepiforum

UN decade on biodiversity

Notes of the Natural History Society:

by Kurz Michael, on 2016.08.17
Bucculatrix chrysanthemella Rebel, 1896 neu für Österreich

Michael Kurz

Bucculatrix chrysanthemella ist ein Endemit der Kanarischen Inseln, deren Raupen sich auf Strauchmargeriten entwickeln (Argyranthemum-Arten und Gonospermum fruticosum, siehe Lepiforum 2016). Mit Argyranthemum-Hybriden wurde die Art in den letzten Jahren in mehrere west- und nordeuropäische Länder verschleppt. Erstmals wird nun die Art auch aus Mitteleuropa gemeldet.

Am 9.7.2016 leuchtete ich in meinem Garten am Stadtrand von Salzburg, wo ich bereits in den letzten Jahren mehrmals neue Arten für das Bundesland Salzburg feststellen konnte (Embacher, Kurz und Nelwek 2013, Kurz & Embacher 2014a und b, Embacher, Kurz & Nelwek 2015). Dabei fing ich kurz hintereinander zwei Kleinschmetterlinge, die auf Grund der Flügelzeichnung einer Phyllonorycter-Art nicht unähnlich sahen, auf Grund der buschigen Kopfbehaarung und der zu Augendeckeln umgebildeten Fühlerbasis aber eindeutig zur Gattung Bucculatrix gehören mussten. Eine Recherche im Internet (Lepiforum 2016) ergab dann sehr rasch, dass es sich bei den beiden Faltern um die auf den kanarischen Inseln heimische Bucculatrix chrysanthemella Rebel, 1986 handeln musste, die auch bereits in andere Länder West- und Nordeuropas verschleppt worden war, aus Mitteleuropa bisher aber nicht bekannt war. Die Verschleppung erfolgte in allen Fällen mit hoher Wahrscheinlichkeit durch Argyranthemum-Hybriden (Strauchmargeriten), die zu den Nahrungspflanzen der Raupen gehören. Da im eigenen Garten solche Strauchmargeriten fehlen, müssen die beiden Tiere aus der näheren Nachbarschaft zugeflogen sein.

Falter von Bucculatrix chrysanthemella Rebel, 1896


  • Lepiforum 2016. Bucculatrix chrysanthemella rebel, 1896. URL: http://www.lepiforum.de/lepiwiki.pl?Bucculatrix_Chrysanthemella [online 2016.08.17].
  • Embacher G., M. A. Kurz & H. Nelwek 2013. 1. Nachtrag zu "Die Schmetterlinge des Landes Salzburg" (Insecta: Lepidoptera). Beiträge zur Entomofaunistik 13: 9-14.
  • Embacher G., M. A. Kurz & H. Nelwek 2015. Dritter Nachtrag zu "Die Schmetterlinge des Landes Salzburg" (Insecta, Lepidoptera). Beiträge zur Entomofaunistik 15: 9-14.
  • Kurz, M. A. & G. Embacher 2014a. 2. Nachtrag zu "Die Schmetterlinge des Landes Salzburg" (Insecta: Lepidoptera). Beiträge zur Entomofaunistik 14: 101-106.
  • Kurz, M. A. & G. Embacher 2014b. European Moth Nights and National Moth Week 2014: Interesting results from Salzburg. Mitteilungen der Naturkundlichen Gesellschaft- URL: http.//www.nksi.info/MitnatGes/ [online 2016.08.17].

    Michael Kurz
    Josef-Waach-Str. 13/1
    A-5023 Salzburg


  • Taxonomy:
    by Kurz Michael, on 2016.05.15
    Morphological characters as indicators for a hypothetical arrangement of species in the genus Micropterix Hübner, 1825

    Michael Kurz, Marion Kurz & Hans Christof Zeller

    During a 25 years study of the genus Micropterix Hübner, 1825, many similarities have been found regarding wing markings and details of male and female genitalia. In order to enhance present DNA-studies, a tentative arrangement of species is proposed based on these characters.

    In several of his publications, already John Heath has tried to cluster species of Micropterix on the basis of similarities in the male genitalia. On this basis, the authors have investigated more than 60 species out of about 80 of the Palaearctic genus Micropterix by themselves since more than 25 years. In order to provide proper characters for identification of both sexes, wing markings and genitalia have been studied in detail. Many of these characters have been proven to be more or less similar in smaller or greater groups of species. Although several characters, especially wing markings may have evolved independently several times from a common ground plan, it is assumed, that others, especially details of the male genitalia indicate a closer relationship of species. Furthermore, it is assumed, that species with a wide distribution are phylogenetically older than endemites of a small region, especially if several endemites are clustered in a certain region.

    Based on these assumptions, several characters have been selected and attributed as plesiomorphic or apomorphic. Although this is highly speculative, the presented thesis may prove useful for DNA-studies of phylogentic relationship of species within the genus, which have recently been initiated by one of us (Zeller).

    Material and Methods:
    Wings markings have been studied with a 20-fold magnification under a stereo microscope. Genitalia preparations have been performed as described recently (Zeller et al. 2007). In the following tables, the presence or absence of a character has been indicated by a "+" or "-". Where material could not be studied by ourselves, we have tried to decide about the presence or absence of characters on the basis of recently published figures.

    Characters have been clustered in three hierarchical groups: The first group of characters is present in many species, whereas the second group is found only in a smaller number of species. The third group of characters finally has been used for grouping small species complexes, obviously consisting of closely related species. Species have been grouped in the tables in order to reach the highest possible accordance with respect to the selected characters.

    Table of characters used in the study (see also figs. 2 and 3):

    1.1 Female: Tergit 9 reduced to area of setae or complety atrophied
    1.2 Male: Tegumen and vinculum more or less fused
    1.3 Male: Setae on accessory claspers differentiated into 3 groups: upper group, lower row, inner row; upper group or inner row often secondarily reduced

    2.1 Male: additional lobes between uncus and accessory clasper are reduced (same as mansuetella-complex)
    2.2 Male: additional lobes between uncus and accessory clasper are specialized
    2.3 Male: accessory claspers reduced as compared to the lobes below the uncus
    2.4 Male: accessory claspers: Inner row of setae with Y-, T- or sickel shaped setae
    2.5 Male: accessory claspers: Tip of accessory claspers with Y-, T- or sickel shaped setae
    2.6 Male: Valvae elongated (autapomorphism)

    3.1 Male: Accessory claspers strongly reduced, almost completely missing, strongly modified
    3.2 Male: Membranous lobe and/or group of setae below accessory clasper
    3.3 Male: Tegumen stout, posterior margin of tegumen fused with accessory claspers
    3.4 Male: Uncus extremly short
    3.5 Male: Uncus modified: strongly elongated
    3.6 Male: Valvae strongly modified (autapomorphism)
    3.7 Male: Accessory claspers more or less trapezoid, setae directing posterior
    3.8 Male: Lower row of setae of accessory claspers: cephal 4 separate setae (autapomorphism)
    3.9 Male: Lower row of setae of accessory claspers: cephal 1-2 setae clearly separated
    3.10 Male: Accessory claspers very well developed
    3.11 Male: Setae of accessory claspers strongly reduced
    3.12 Male: anterior part of tegumen folded, accessory claspers slightly reduced
    3.13 Female: Receptaculum seminis extremely long (autapomorphism)

    Wing markings (Fig 1):
    In the genus Micropterix, wing markings differ not only from species to species, but may be highly variable also within one and the same species. Several species are known, which have marked as well as unmarked forms (e.g. Micropterix aruncella (Scopoli, 1763) or Micropterix paykullella (Fabricius, 1794)). Nevertheless, a common ground plan seems to be evident, consisting of a darker (mostly purple) ground colour with three lighter (golden or silvery) transverse fasciae. Additional and therefore probably derived characters in the wing markings are the presence of golden colouration along the inner and outer margins and a small costal spot at about 3/5 of the forewing length, although these characters are already found in some species, which are otherwise assumed to be close to the basis.

    Fig. 1: Ground plan of wing markings in the genus Micropterix Hübner, 1825

    Female genitalia (Fig 2):
    Female genitalia provide only very poor characters, even for identification purposes (Zeller et al. 2007). With one known exception (Micropterix mansuetella Zeller, 1844), tergite IX in the female abdomen is completely atrophied. It is therefore assumed, that M. mansuetella is one of the most primitive members of the genus. The only other character of the female genitalia that seems to be useful, is the extremely elongated receptaculum seminis, which has been found in two members of an obviously well defined group with respect to the male genitalia. This is Micropterix klimeschi Heath, 1973 and its relatives.

    Fig. 2: Scheme of female genitalia

    Male genitalia (Fig. 3):
    The male genitalia of Micropterix species provide several characters, which are probably apomorphies of certain species groups. All these characters are absent in M. mansuetella and supposedly related species. Among them are the presence and secondary loss of an additional lobe between accessory claspers and uncus, the presence of an additional lobe between accessory claspers and valves, the presence of up to three groups of modified, thickened, Y- or T-shaped setae on the accessory claspers and the form of the valvae. Minor characters are the direction of spinoid seate on the accessory claspers (distally or ventrally directed) and the grouping of these setae (1-2 setae proximally offset).

    Fig. 3: Scheme of male genitalia

    Geographical distribution:
    M. mansuetella is distributed throughout a large portion of Europe, in accordance with our assumption, that more primitive species(-groups) should have a wider distribution. Based on the same assumption, the following species should be closer to the basis within their groups than others: Micropterix aureatella (Scopoli, 1763) and Micropteric aruncella (Scopoli, 1763) in group 2 and the Micropterix klimeschi (Heath, 1973)-complex or Micropterix tunbergella (Fabricius, 1787) in group 3.

    Arrangement of species:
    In a first step, three big groups have been recognized (tab. groups). Nearly all species could have been attributed to one of these three groups without force, only in some cases published drawings of the male genitalia are to inaccurate to enable proper placement. The proposed most primitive group lacks derived features like groups of modified setae on the accessory claspers or additional lobes between uncus and accessory claspers or between accessory claspers and valves, whereas the largest and probably most derived one shows all these features or a secondary reduction or even loss of them.

    In a second step, a refined arrangement has been tried, using minor characters in order to break down the larger groups into smaller units (tab. complexes). The sequence of these species-complexes within a group is highly speculative, although the complexes itself mostly seem to form natural units.

    Dataset: Table of characters

    C. Zeller-Lukashort, M.E. Kurz, D.C. Lees & M.A. Kurz 2007. A review of Micropterix Hübner, 1825 from northern and central Europe (Micropterigidae), Nota lepidopterologica 30 (2): 235 - 298.

    Michael Kurz: Josef-Waach-Strasse, 13/1, A-5020 Salzburg, Austria; email: michael.kurz@gmx.at.
    Marion Kurz: Sportplatzstraße 23, A-5303 Thalgau, Austria; email: marion.kurz@gmx.at.
    Christof Zeller: Forsthubfeld 14, A-5303 Thalgau, Austria; email: christof.zeller@gmx.net


    by Kurz Michael, on 2015.07.09
    Erste Hitzewelle des Jahres 2015 in Salzburg
    Michael Kurz
    Waren der Mai und der Juni in Salzburg noch recht unterkühlt und regnerisch, so brachte Hoch „Annelie“ ab Ende Juni die erste beständige Schönwetterperiode seit langem. Die Omega-Hochdrucklage über Mitteleuropa saugte nun heiße Luft von der Iberischen Halbinsel und Nordafrika zu uns und so stiegen die Temperaturen vom Westen Österreichs aus von Tag zu Tag. Natürlich gab es in Salzburg am 29. und 30.6.2015 noch „Restbewölkung“, während es im Großteil Österreichs bereits sehr sonnig war. Doch ab Mittwoch, dem 1.7.2015 war auch bei uns der Sommer nicht mehr aufzuhalten. Bereits am Tag darauf stiegen die Temperaturen über 30 °C und am Wochenende erreichten sie knapp 35 °C. Der Höhepunkt und damit der heißeste Tag des Jahres wurden am Dienstag, den 7.7.2015 mit über 36 °C gemessen. Bereits einen Tag später fand die Hitzewelle aber bereits ihr jähes Ende. Mit einer Kaltfront kühlte es um mehr als 15 °C ab, wobei Salzburg, im Gegensatz zu anderen Gegenden, wenigstens von schlimmen Unwettern verschont blieb.


    by Kurz Michael, on 2015.02.23
    Physical constants and the event horizon

    Michael Kurz

    It has been shown recently, that physical constants can be expressed in terms of cosmic parameters, i.e. age, size and energy of the universe (Kurz 2011). Assuming constant energy however, this is true only for the right now moment. It has been suggested therefore, that the energy of the universe is not constant, but increases with time (Kurz 2011). This increase in energy also increases the event horizon of the universe and leads to expansion.

    In a more precise calculation than from Kurz (2011), the equilibrium between expansion and gravitation can be formulated as follows:

    GM2/R = Mv2/2

    With lim(v -> c), the expression for the gravitational constant G becomes:

    G = R5/2*t4*E

    The energy content of the (observable) universe is close to 1070 J (see dataset). The calculated radius of its event horizon (the Schwarzschild-radius r(s) = 2GM/c2) is therefore app. 1026 m, which is identical to its (observed) radius (see below). The coincidence of Schwarzschild-radius and observable radius is however a highly improbable one, since the Schwarzschild-radius is invariant with assumed constant energy, whereas the (observable) radius is constantly increasing.

    The equation for the Schwarzschild-radius r(s) is:

    r(s) = 2GM/c2

    Introducing G into this equation and replacing M by M = E/c2 and R/t = c, it follows that:

    r(s) = 2*c4*R*E / 2*c4*E = R

    An increasing energy of the universe however, would also increase its Schwarzschild-radius and a proper rate of energy increase could not only bring an expanding universe into equilibrium again, but solve the above mentioned improbability. It is therefore assumed that the radius of the (observable) universe always equals the Schwarzschild-radius. In this simplified, classical model, the universe is spherical, expands with light velocity, has an age of app. 13.8 billion years and the values of the physical constants are fixed. Furthermore, this model avoids a singularity at the very beginning, since at t=0, R and E also are zero. Since zero values of the cosmic parameters however give undefined values of the physical constants, the zero state cannot be part of the universe therefore. The very beginning of the universe must have positive values of t, R and E and it is assumed already by Kurz (2011), that these values are the corresponding Planck-values. Increase of these values also is assumed to be quantified in steps of Planck units.
    To curve space-time, energy is needed. A certain amount of energy (e.g. mass) is even able to curve a “certain amount” of space-time into a sphere, i.e. a black hole with a defined event horizon, provided that all the energy is positioned within the event horizon. Doubling the energy content would also double the amount of curved space-time (the radius of the event horizon). Curved space-time therefore can be considered as a form of potential (negative) energy, tending to flatten space-time against the force of gravitation. Therefore, an event horizon (spherical space-time) and its energy content are always in equilibrium and curved space-time (negative) and its energy content (positive) are equivalents of each other.
    Interestingly, the inside of the above model of an expanding (black hole) universe with increasing energy should be more or less “flat” at all times, with Omega = 1, since the energy density would equal exactly the critical energy density (see dataset):

    rho = E/V*c2 = rho(c) = 3H2/8*pi*G = app. 9.4*10-27 kg/m3


  • Kurz, M. 2011. Are Planck-particles the primordial particles of matter in the universe? Journal of unsolved Questions 2, issue 1-OQ: 1-2.
  • Kurz, M. 2015. Dataset: cosmic parameters and physical constants. – available at: http://www.nkis.info/MittnatGes/datasets/parameter.xlsx

    Michael Kurz
    Josef-Waach-Str. 13/1
    A-5023 Salzburg


  • Floristics:
    by Kurz Michael, on 2014.10.02
    Fauna und Flora von Salzburg: Interessante Pflanzenfunde 2014

    Michael Kurz

    Im Rahmen des Projektes „Fauna und Flora von Salzburg“ (Kurz 2010) gelangen im Jahr 2014 eine Reihe interessanter Nachweise von Gefäßpflanzen, die auf Basis der Flora von Wittmann et al. (1987) als selten anzusehen sind. Drei Arten (Vicia cordata, Verbascum phoeniceum und Senecio inaequidens) sind in dieser Flora noch nicht für Salzburg verzeichnet.

    Material und Methoden:
    Von allen aufgeführten Arten wurden Teilbelege gesammelt (Ausnahme: Verbascum phoeniceum und Hippophae rhamnoides), von den meisten Taxa wurden zudem Photographien gemacht. Die Bestimmung erfolgte nach den Tabellen von Fischer et al. (1983). Alle Funde sind im „Naturkundlichen Informationssystem“ (Kurz & Kurz 2014) dokumentiert.

    Vicia cordata: Salzburg, Stadt Salzburg, Umgebung KW Lehen, 2014.06.11, Erdaufschüttung am Damm, massenhaft. Ob bereits frühere Funde von Vicia sativa (Wittmann et al. 1987) hierher zu stellen sind, konnte bisher nicht geklärt werden.

    Vicia villosa: Salzburg, Flachgau, zwischen Gols und Viehhausen, 2014.06.11, brachliegender Getreideacker.

    Vicia pannonica: Salzburg, Flachgau, zwischen Gols und Viehhausen, 2014.06.11, brachliegender Getreideacker.

    Trifolium incarnatum: Salzburg, Flachgau, zwischen Gols und Viehhausen, 2014.06.11, brachliegender Getreideacker.

    Trifolium suaveolens: Salzburg, Stadt Salzburg, Kraftwerk Rott, 2014.06.08, Erdaufschüttung am Damm und Salzburg, Flachgau, zwischen Gols und Viehhausen, 2014.06.11, brachliegender Getreideacker.

    Hippophae rhamnoides: Salzburg, Flachgau, Siezenheim, Siezenheimer Steg, 2014.06.08, Flußau, Waldrand.

    Legousia speculum-veneris: Salzburg, Flachgau, zwischen Viehhausen und Glansiedlung, Getreideacker und Salzburg, Flachgau, zwischen Gols und Viehhausen, 2014.06.11, brachliegender Getreideacker.

    Hypericum humifusum: Salzburg, Stadt Salzburg, Gnigl, Josef Waach-Straße, 2014.08.10, magere Stelle im Rasen.

    Verbascum phoeniceum: Salzburg, Stadt Salzburg, Sam, S-Bahn-Station, 2014.05.13 und 2014.05.26, Magerwiese. Bei Wittmann et al. (1987) noch nicht für Salzburg verzeichnet, wurde die Art erst einmal im Botanischen Garten in Salzburg ausgewildert gefunden (Pilsl in litt.)
    Senecio inaequidens: Salzburg, Stadt Salzburg, Mülln, Rudolf-Biebl-Straße, 2014.07.11, Straßenrand. Bei Wittmann et al. (1987) noch nicht aufgeführt, doch ist die Art seit einigen Jahren entlang der Autobahn zwischen Eugendorf und Hallein in massiver Ausbreitung begriffen (Pilsl in litt.)
    Streptopus amplexifolius: Salzburg, Osterhorngruppe, Tiefbrunnau, Weg auf die Lanzenalm, 2014.06.28 und Salzburg, Osterhorngruppe, Faistenau, Weg zur Schafbergalm, 2014.08.03, kleine Lichtung, bzw. Waldrand im Fichtenwald.


  • Manfred A. Fischer, Karl Oswald, Wolfgang Adler 1994. Exkursionsflora von Österreich . Eugen Ulmer, Stuttgart/Wien.
  • Kurz, M. A. 2010. Fauna und Flora von Salzburg. URL: http://www.salzburg.com/wiki/index.php/Salzburgwiki:Projekt_Fauna_und_Flora [online 22.August 2014].
  • Kurz, M. A. & M. E. Kurz 2001-2014. Naturkundliches Informationssystem. Url: http://www.nkis.info [online 22 August 2014].

    Michael Kurz
    Josef-Waach-Str. 13/1
    A-5023 Salzburg